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Abstract
We investigate the security of Diffie-Hellman key exchange 
as used in popular Internet protocols and find it to be less 
secure than widely believed. First, we present Logjam, a 
novel flaw in TLS that lets a man-in-the-middle downgrade 
connections to “export-grade” Diffie-Hellman. To carry out 
this attack, we implement the number field sieve discrete 
logarithm algorithm. After a week-long precomputation for 
a specified 512-bit group, we can compute arbitrary discrete 
logarithms in that group in about a minute. We find that 
82% of vulnerable servers use a single 512-bit group, and 
that 8.4% of Alexa Top Million HTTPS sites are vulnerable 
to the attack.a In response, major browsers have changed to 
reject short groups.

We go on to consider Diffie-Hellman with 768- and 1024-
bit groups. We estimate that even in the 1024-bit case, the 
computations are plausible given nation-state resources.  
A small number of fixed or standardized groups are used by 
millions of servers; performing precomputation for a single 
1024-bit group would allow passive eavesdropping on 18% 
of popular HTTPS sites, and a second group would allow 
decryption of traffic to 66% of IPsec VPNs and 26% of SSH 
servers. A close reading of published NSA leaks shows that 
the agency’s attacks on VPNs are consistent with having 
achieved such a break. We conclude that moving to stronger 
key exchange methods should be a priority for the Internet 
community.

1. INTRODUCTION
Diffie-Hellman (DH) key exchange is a popular cryptographic 
algorithm that allows Internet protocols to agree on a shared 
key and negotiate a secure connection. It is fundamental to  
protocols such as Hypertext Transport Protocol Secure 
(HTTPS), Secure Shell (SSH), Internet Protocol Security 
(IPsec), Simple Mail Transfer Protocol Secure (SMTPS), and 
other protocols that rely on Transport Layer Security (TLS). 
Many protocols use Diffie-Hellman to achieve perfect forward 
secrecy, the property that a compromise of the long-term 
keys used for authentication does not compromise session 
keys for past connections. We examine how Diffie-Hellman 
is commonly implemented and deployed with common 
protocols and find that, in practice, it frequently offers less 
security than widely believed.

There are two reasons for this. First, a surprising number 
of servers use weak Diffie-Hellman parameters or maintain 

The full version of this paper was published in Proceedings 
of the 22nd Conference on Computer and Communications 
Security (CCS), October 2015, ACM. The full paper and 
additional materials are available at https://weakdh.org/.

support for obsolete 1990s-era “export-grade” cryptography. 
More critically, the common practice of using standardized, 
 hard-coded, or widely shared Diffie-Hellman parameters 
has the effect of dramatically reducing the cost of large-scale 
attacks, bringing some within range of feasibility.

The current best technique for attacking Diffie-Hellman 
relies on compromising one of the private exponents (a, b) by 
computing the discrete logarithm of the corresponding public 
value (ga mod p, gb mod p). With state-of-the-art number field 
sieve algorithms, computing a single discrete logarithm is 
more difficult than factoring a Rivest–Shamir–Adleman (RSA) 
modulus of the same size. However, an adversary who per-
forms a large precomputation for a prime p can then quickly 
calculate arbitrary discrete logarithms in that group, amortiz-
ing the cost over all targets that share this parameter. Although 
this fact is well known among mathematical cryptographers,  
it seems to have been lost among practitioners deploying 
cryptosystems. We exploit it to obtain the following results.

Active attacks on export ciphers in TLS
We introduce Logjam, a new attack on TLS by which a 
man-in-the-middle attacker can downgrade a connection 
to export-grade cryptography. This attack is reminiscent 
of the FREAK attack1 but applies to the ephemeral Diffie-
Hellman ciphersuites and is a TLS protocol flaw rather than 
an implementation vulnerability. We present measure-
ments that show that this attack applies to 8.4% of Alexa Top 
Million HTTPS sites and 3.4% of all HTTPS servers that have 
browser-trusted certificates.

To exploit this attack, we implemented the number field 
sieve discrete logarithm algorithm and carried out precom-
putation for two 512-bit Diffie-Hellman groups used by more 
than 92% of the vulnerable servers. This allows us to compute 
individual discrete logarithms in about a minute. Using our 
discrete logarithm oracle, we can compromise connections to 
over 7% of Alexa Top Million HTTPS sites. Discrete logarithms 
over larger groups have been computed before,2 but, as far as 
we are aware, this is the first time they have been exploited to 
expose concrete vulnerabilities in real-world systems.

Risks from common 1024-bit groups
We explore the implications of precomputation attacks for 
768- and 1024-bit groups, which are widely used in practice 

a Except where otherwise noted, the experimental data and network 
 measurements for this article were obtained in early 2015.
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logarithm. In fact, as illustrated in Figure 1, a single large 
precomputation on p can be used to efficiently break all 
Diffie-Hellman exchanges made with that prime.

Diffie-Hellman is typically implemented with prime fields 
and large group orders. In this case, the most efficient known 
algorithm for computing discrete logarithms is the Number 
Field Sieve (NFS).9, 11, 18 The algorithm has four stages with 
different computational properties. The first three steps are 
only dependent on the prime p and comprise most of the 
computation.

First is polynomial selection, in which one finds a polyno-
mial f (z) defining a number field Q[z]/f (z) for the computa-
tion. This parallelizes well and is only a small portion of the 
runtime.

In the second stage, sieving, one factors ranges of integers 
and number field elements in batches to find many rela-
tions of elements, all of whose prime factors are less than 
some bound B (called B-smooth). Sieving parallelizes well, 
but is computationally expensive, because we must search 
through and attempt to factor many elements.

In the third stage, linear algebra, we construct a large, 
sparse matrix consisting of the coefficient vectors of prime 
factorizations we have found. This stage can be parallelized 
in a limited fashion, and produces a database of logarithms 
which are used as input to the final stage.

The final stage, descent, actually deduces the discrete loga-
rithm of the target y. We re-sieve until we find a set of relations 
that allow us to write the logarithm of y in terms of the loga-
rithms in the precomputed database. Crucially, descent is the 
only NFS stage that involves y (or g), so polynomial selection, 
sieving, and linear algebra can be done once for a prime p and 
reused to compute the discrete logarithms of many targets.

The numerous parameters of the algorithm allow some flexi-
bility to reduce time on some computational steps at the expense 
of others. For example, sieving more will result in a smaller 
matrix, making linear algebra cheaper, and doing more work in 
the precomputation makes the final descent step easier.

Standard primes
Generating safe primesb can be computationally bur-
densome, so many implementations use standardized 

and still considered secure. We estimate the computational 
resources necessary to compute discrete logarithms in groups 
of these sizes, concluding that 768-bit groups are within 
range of academic teams, and 1024-bit groups may plausibly 
be within range of nation-state adversaries. In both cases, 
individual logarithms can be quickly computed after the ini-
tial precomputation.

We then examine evidence from published Snowden doc-
uments that suggests that the National Security Agency (NSA) 
may already be exploiting 1024-bit Diffie-Hellman to decrypt 
Virtual Private Network (VPN) traffic. We perform measure-
ments to understand the implications of such an attack for 
popular protocols, finding that an attacker who could per-
form precomputations for ten 1024-bit groups could passively 
decrypt traffic to about 66% of Internet Key Exchange (IKE) 
VPNs, 26% of SSH servers, and 24% of popular HTTPS sites.

Mitigations and lessons
In response to the Logjam attack, mainstream browsers 
have implemented a more restrictive policy on the size of 
Diffie-Hellman groups they accept, and Google Chrome has 
discontinued support for finite field key exchanges. We fur-
ther recommend that TLS servers disable export-grade cryp-
tography and carefully vet the Diffie-Hellman groups they 
use. In the longer term, we advocate that protocols migrate 
to elliptic curve Diffie-Hellman.

2. DIFFIE-HELLMAN CRYPTANALYSIS
Diffie-Hellman key exchange was the first published public-
key algorithm.5 In the simple case of prime groups, Alice and 
Bob agree on a prime p and a generator g of a multiplicative 
subgroup modulo p. Then each generates a random private 
exponent, a and b. Alice sends ga mod p, Bob sends gb mod 
p, and each computes a shared secret gab mod p. While there 
is also a Diffie-Hellman exchange over elliptic curve groups, 
we address only the “mod p” case.

The security of Diffie-Hellman is not known to be equiv-
alent to the discrete logarithm problem, but computing 
discrete logarithms remains the best known cryptanalytic 
attack. An attacker who can find the discrete logarithm x 
from y = gx mod p can easily find the shared secret.

Textbook descriptions of discrete logarithm algorithms 
can be misleading about the computational tradeoffs, for 
example by optimizing for computing a single discrete 
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Figure 1. Number field sieve for discrete logarithms. This algorithm consists of a precomputation stage that depends only on the prime p 
and a descent stage that computes individual logarithms. With sufficient precomputation, an attacker can quickly break any Diffie-Hellman 
instances that use a particular p.

b An odd prime p is safe when (p − 1)/2 is prime.
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To ensure agreement on the negotiation messages, 
and to prevent downgrade attacks, each party computes 
the TLS master secret from gab and calculates a Message 
Authentication Code (MAC) of its view of the handshake 
transcript. These MACs are exchanged in a pair of Finished 
messages and verified by the recipients.

To comply with 1990s-era U.S. export restrictions on cryp-
tography, SSL 3.0 and TLS 1.0 supported reduced-strength 
DHE_EXPORT ciphersuites that were restricted to primes 
no longer than 512 bits. In all other respects, DHE_EXPORT 
protocol messages are identical to DHE. The relevant export 
restrictions are no longer in effect, but many servers main-
tain support for backward compatibility.

To understand how HTTPS servers in the wild use Diffie-
Hellman, we modified the ZMap6 toolchain to offer DHE and 
DHE_EXPORT ciphersuites and scanned TCP/443 on both 
the full public IPv4 address space and the Alexa Top Million 
domains. The scans took place in March 2015. Of 539,000 
HTTPS sites among Top Million domains, we found that 
68.3% supported DHE and 8.4% supported DHE_EXPORT. 
Of 14.3mn IPv4 HTTPS servers with browser-trusted certifi-
cates, 23.9% supported DHE and 4.9% DHE_EXPORT.

While the TLS protocol allows servers to generate their 
own Diffie-Hellman parameters, just two 512-bit primes 
account for 92.3% of Alexa Top Million domains that sup-
port DHE_EXPORT (Table 1), and 92.5% of all servers with 
browser-trusted certificates that support DHE_EXPORT. The 
most popular 512-bit prime was hard-coded into many ver-
sions of Apache; the second most popular is the mod_ssl 
default for DHE_EXPORT.

3.2. Active downgrade to export-grade DHE
Given the widespread use of these primes, an attacker with 
the ability to compute discrete logarithms in 512-bit groups 
could efficiently break DHE_EXPORT handshakes for about 
8% of Alexa Top Million HTTPS sites, but modern browsers 
never negotiate export-grade ciphersuites. To circumvent 
this, we show how an attacker can downgrade a regular 
DHE connection to use a DHE_EXPORT group, and thereby 
break both the confidentiality and integrity of application 
data.

The attack, which we call Logjam, is depicted in Figure 2  
and relies on a flaw in the way TLS composes DHE and 

Diffie-Hellman parameters. A prominent example is the 
Oakley groups,17 which give “safe” primes of length 768 
(Oakley Group 1), 1024 (Oakley Group 2), and 1536 (Oakley 
Group 5). These groups were published in 1998 and have 
been used for many applications since, including IKE, SSH, 
Tor, and Off-the-Record Messaging (OTR).

When primes are of sufficient strength, there seems to 
be no disadvantage to reusing them. However, widespread 
reuse of Diffie-Hellman groups can convert attacks that are 
at the limits of an adversary’s capabilities into devastating 
breaks, since it allows the attacker to amortize the cost of 
discrete logarithm precomputation among vast numbers of 
potential targets.

3. ATTACKING TLS
TLS supports Diffie-Hellman as one of several possible key 
exchange methods, and prior to public disclosure of our 
attack, about two-thirds of popular HTTPS sites supported it, 
most commonly using 1024-bit primes. However, a smaller 
number of servers also support legacy “export-grade” Diffie-
Hellman using 512-bit primes that are well within reach of 
NFS-based cryptanalysis. Furthermore, for both normal and 
export-grade Diffie-Hellman, the vast majority of servers use 
a handful of common groups.

In this section, we exploit these facts to construct a novel 
attack against TLS, which we call the Logjam attack. First, we 
perform NFS precomputations for the two most popular 512-
bit primes on the web, so that we can quickly compute the dis-
crete logarithm for any key exchange message that uses one of 
them. Next, we show how a man-in-the-middle, so armed, can 
attack connections between popular browsers and any server 
that allows export-grade Diffie-Hellman, by using a TLS proto-
col flaw to downgrade the connection to export-strength and 
then recovering the session key. We find that this attack with 
our precomputations can compromise connections to about 
8% of HTTPS servers among Alexa Top Million domains.

3.1. TLS and Diffie-Hellman
The TLS handshake begins with a negotiation to determine 
the cryptographic algorithms used for the session. The cli-
ent sends a list of supported ciphersuites (and a random 
nonce cr) within the ClientHello message, where each cipher-
suite specifies a key exchange algorithm and other primi-
tives. The server selects a ciphersuite from the client’s list 
and signals its selection in a ServerHello message (containing 
a random nonce sr).

TLS specifies ciphersuites supporting multiple varieties of 
Diffie-Hellman. Textbook Diffie-Hellman with unrestricted 
strength is called “ephemeral” Diffie-Hellman, or DHE, and 
is identified by ciphersuites that begin with TLS_DHE_*.c In 
DHE, the server is responsible for selecting the Diffie-Hellman 
parameters. It chooses a group (p, g), computes gb, and sends 
a ServerKeyExchange message containing a signature over the 
tuple (cr, sr, p, g, gb) using the long-term signing key from its 
certificate. The client verifies the signature and responds 
with a ClientKeyExchange message containing ga.

c New ciphersuites that use elliptic curve Diffie-Hellman (ECDHE) are gaining 
in popularity, but we focus exclusively on the traditional prime field variety.

Table 1. Top 512-bit Diffie-Hellman primes for TLSd.

Source Popularity Prime

Apache 82% 9fdb8b8a004544f0045f1737d0ba2e0b 
274cdf1a9f588218fb435316a16e3741 
71fd19d8d8f37c39bf863fd60e3e3006 
80a3030c6e4c3757d08f70e6aa871033

mod_ssl 10% d4bcd52406f69b35994b88de5db89682 
c8157f62d8f33633ee5772f11f05ab22 
d6b5145b9f241e5acc31ff090a4bc711 
48976f76795094e71e7903529f5a824b

(others)  8% (463 distinct primes)

d 8.4% of Alexa Top Million HTTPS domains allow DHE_EXPORT, of which 92.3% use 
one of the two most popular primes, shown here.
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DHE_EXPORT. When a server selects DHE_EXPORT for a hand-
shake, it proceeds by issuing a signed ServerKeyExchange 
message containing a 512-bit p512, but the structure of this 
message is identical to the message sent during standard 
DHE ciphersuites. Critically, the signed portion of the serv-
er’s message fails to include any indication of the specific 
ciphersuite that the server has chosen. Provided that a cli-
ent offers DHE, an active attacker can rewrite the client’s 
ClientHello to offer a corresponding DHE_EXPORT cipher-
suite accepted by the server and remove other ciphersuites 
that could be chosen instead. The attacker rewrites the 
ServerHello response to replace the chosen DHE_EXPORT 
ciphersuite with a matching non-export ciphersuite and for-
wards the ServerKeyExchange message to the client as is. The 
client will interpret the export-grade tuple (p512, g, gb) as valid 
DHE parameters chosen by the server and proceed with the 
handshake. The client and server have different handshake 
transcripts at this stage, but an attacker who can compute 
b in close to real time can then derive the master secret and 
connection keys to complete the handshake with the client.

There are two remaining challenges in implementing this 
active downgrade attack. The first is to compute individual 
discrete logarithms in close to real time, and the second is 
to delay handshake completion until the discrete logarithm 
computation has had time to finish.

3.3. 512-bit discrete logarithm computations
We modified CADO-NFS19 to implement the number field 
sieve discrete logarithm algorithm and applied it to the top 
two DHE_EXPORT primes shown in Table 1. Precomputation 
took seven days for each prime, after which computing indi-
vidual logarithms requires a median of 70 seconds.

Precomputation. As illustrated in Figure 1, the precom-
putation phase includes the polynomial selection, sieving, 
and linear algebra steps. For this precomputation, we delib-
erately sieved more than strictly necessary. This enabled 
two optimizations: first, with more relations obtained from 
sieving, we eventually obtain a larger database of known 
logarithms, which makes the descent faster. Second, more 

sieving relations also yield a smaller linear algebra step, 
which is desirable because sieving is much easier to paral-
lelize than linear algebra.

For the polynomial selection and sieving steps, we used 
idle time on 2000–3000 microprocessor cores in parallel. 
Polynomial selection ran for about 3hrs (7,600 core-hours). 
Sieving ran for 15hrs (21,400 core-hours). This sufficed to 
collect 40mn relations of which 28mn were unique, involv-
ing 15mn primes of at most 27 bits.

From this data set, we obtained a square matrix with 2.2mn 
rows and columns, with 113 nonzero coefficients per row 
on average. We solved the corresponding linear system on 
a 36-node cluster using the block Wiedemann algorithm.4, 20  
Using unoptimized code, the computation finished in 
120hrs (60,000 core-hours).

The experiment above was done with CADO-NFS in early 
2015. As of 2017, release 2.3 of CADO-NFS19 performs 20% 
faster for sieving, and drastically faster for linear algebra, 
since 9,000 core-hours suffice to solve the same linear sys-
tem on the same hardware. In total, the wall-clock time for 
each precomputation was slightly over one week in 2015, 
and is reduced to about two days with current hardware and 
more recent software.

Descent. Once this precomputation was finished, we 
were able to run the final descent step to compute individual 
discrete logarithms in about a minute. We implemented the 
descent calculation in a mix of Python and C. On average, 
computing individual logarithms took about 70sec, but the 
time varied from 34sec to 206sec on a server with two 18-core 
Intel Xeon E5-2699 CPUs. For purposes of comparison, a 
single 512-bit RSA factorization using the CADO-NFS imple-
mentation takes about four days of wall-clock time on the 
computer used for the descent.19

3.4. Active attack implementation
The main challenge in performing this attack is to compute 
the shared secret gab before the handshake completes in 
order to forge a Finished message from the server. With our 
descent implementation, the computation takes an aver-
age of 70sec, but there are several ways an attacker can work 
around this delay:

Non-browser clients. Different TLS clients impose dif-
ferent time limits, after which they kill the connection. 
Command-line clients such as curl and git have long or 
no timeouts, and we can hijack their connections without 
difficulty.

TLS warning alerts. Web browsers tend to have shorter 
timeouts, but we can keep their connections alive by send-
ing TLS warning alerts, which are ignored by the browser 
but reset the handshake timer. For example, this allows us 
to keep Firefox TLS connections alive indefinitely.

Ephemeral key caching. Many TLS servers do not use a 
fresh value b for each connection, but instead compute gb 
once and reuse it for multiple negotiations. For example, 
F5 BIG-IP load balancers will reuse gb by default. Microsoft 
Schannel caches gb for two hours — this setting is hard-
coded. For these servers, an attacker can compute the dis-
crete logarithm of gb from one connection and use it to 
attack later handshakes.

Client C
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certS, sign(skS, [cr  |  sr  | p512 | g |  gb])
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Figure 2. The Logjam attack. A man-in-the-middle can force TLS 
clients to use export-strength Diffie-Hellman with any server that 
allows DHE_EXPORT. Then, by finding the 512-bit discrete log, the 
attacker can learn the session key and arbitrarily read or modify the 
contents. Datafs refers to False Start application data that some TLS 
clients send before receiving the server’s Finished message.
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TLS False Start. Even when clients enforce shorter tim-
eouts and servers do not reuse values for b, the attacker can 
still break the confidentiality of user requests that use TLS 
False Start. Recent versions of Chrome, Internet Explorer, 
and Firefox implement False Start, but their policies on 
when to enable it vary. Firefox 35, Chrome 41, and Internet 
Explorer (Windows 10) send False Start data with DHE.

In these cases, a man-in-the-middle can record the hand-
shake and decrypt the False Start payload at leisure.

4. NATION-STATE THREATS TO DIFFIE-HELLMAN
The previous sections demonstrate the existence of practi-
cal attacks against Diffie-Hellman key exchange as currently 
used by TLS. However, these attacks rely on the ability to 
downgrade connections to export-grade cryptography. In 
this section we address the following question: how secure 
is Diffie-Hellman in broader practice, as used in other pro-
tocols that do not suffer from downgrade, and when applied 
with stronger groups?

To answer this question we must first examine how the 
number field sieve for discrete logarithms scales to 768- 
and 1024-bit groups. As we argue below, 768-bit groups in 
relatively widespread use are now within reach for academic 
computational resources. Additionally, performing precom-
putations for a small number of 1024-bit groups is plausi-
bly within the resources of nation-state adversaries. The 
precomputation would likely require special-purpose hard-
ware, but would not require any major algorithmic improve-
ments. In light of these results, we examine several standard 
Internet security protocols — IKE, SSH, and TLS — to deter-
mine their vulnerability. Although the cost of the precompu-
tation for a 1024-bit group is several times higher than for an 
RSA key of equal size, a one-time investment could be used 
to attack millions of hosts, due to widespread reuse of the 
most common Diffie-Hellman parameters. Finally, we apply 
this new understanding to a set of recently published docu-
ments to evaluate the hypothesis that the National Security 
Agency has already implemented such a capability.

4.1. Scaling NFS to 768- and 1024-bit Diffie-Hellman
Estimating the cost for discrete logarithm cryptanalysis at 
larger key sizes is far from straightforward due to the com-
plexity of parameter tuning. We attempt estimates up to 
1024-bit  discrete logarithm based on the existing literature 

and our own experiments but further work is needed for 
greater confidence. We summarize all the costs, measured 
or estimated in Table 2.

DH-768: done in 2016. When the ACM CCS version of this 
article was prepared, the latest discrete logarithm record 
was a 596-bit computation. Based on that work, and on prior 
experience with the 768-bit factorization record in 2009,12 
we made the conservative prediction that it was possible, as 
explained in Section 2, to put more computational effort into 
sieving for the discrete logarithm case than for factoring, so 
that the linear algebra step would run on a slightly smaller 
matrix. This led to a runtime estimate of around 37,000 core-
years, most of which was spent on linear algebra.

This estimate turned out to be overly conservative, for sev-
eral reasons. First, there have been significant improve-
ments in our software implementation (Section 3.3). In 
addition, our estimate did not use the Joux-Lercier alter-
native polynomial selection method,11 which is specific 
to discrete logarithms. For 768-bit discrete logarithms, 
this polynomial selection method leads to a significantly 
smaller computational cost.

In 2016, Kleinjung et al. completed a 768-bit discrete log-
arithm computation.13 While this is a massive computation 
on the academic scale, a computation of this size has likely 
been within reach of nation-states for more than a decade. 
This data is mentioned in Table 2.

DH-1024: Plausible with nation-state resources. Experi-
mentally extrapolating sieving parameters to the 1024-bit 
case is difficult due to the trade-offs between the steps of 
the algorithm and their relative parallelism. The prior work 
proposing parameters for factoring a 1024-bit RSA key is 
thin, and we resort to extrapolating from asymptotic com-
plexity. For the number field sieve, the complexity is exp  
((k + o(1) )(log N)1/3(log log N)2/3 ), where N is the integer to 
factor or the prime modulus for discrete logarithm and k is 
an algorithm-specific constant. This formula is inherently 
imprecise, since the o(1) in the exponent can hide poly-
nomial factors. This complexity formula, with k = 1.923, 
describes the overall time for both discrete logarithm and 
factorization, which are both dominated by sieving and lin-
ear algebra in the precomputation. Evaluating the formula 
for 768- and 1024-bit N gives us estimated multiplicative fac-
tors by which time and space will increase from the 768- to 
the 1024-bit case.

Table 2. Estimating costs for factoring and discrete loge.

Sieving Linear Algebra Descent

Log2 B Core-years Rows Core-years Core-time

RSA-512 29 0.3 4.2mn 0.03 Timings with default CADO-NFS parameters.
DH-512 27 2.5 2.2mn 1.1 10min For the computations in this paper; may be suboptimal.
RSA-768 37 800 250mn 100 Est. based on Kleinjung and Aoki et al.12 with less sieving.
DH-768 36 4,000 24mn 920 43hrs Data from, Kleinjung and Diem et al.13, Table 1.
RSA-1024 42 ≈1,000,000 ≈8.7bn ≈120,000 Crude estimate based on complexity formula.
DH-1024 40 ≈5,000,000 ≈0.8bn ≈1,100,000 30 days Crude estimate based on formula and our experiments.

e For sieving, we give one important parameter, which is the number of bits of the smoothness bound B. For linear algebra, all costs for DH are for safe primes; for Digital Signature 
Algorithm (DSA) primes with group order of 160 bits, this should be divided by 6.4 for 1024 bits, 4.8 for 768 bits, and 3.2 for 512 bits.
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of 80.7 If we optimistically assume that a similar reduction 
can be achieved for discrete logarithm, the hardware cost to 
perform the linear algebra for DH-1024 in one year is plausi-
bly on the order of $5mn.

Combining these estimates, special-purpose hardware 
that can perform the precomputation for one 1024-bit group 
per year would cost roughly $13mn. This is much less than 
the “hundreds of millions of dollars” that we conservatively 
estimated in 2015, making it even more likely that nation-
state adversaries have implemented the attack.

To put this dollar figure in context, the FY 2012 budget for 
the U.S. Consolidated Cryptologic Program (which includes NSA) 
was $10.5bn.22 The 2013 budget request, which prioritized invest-
ment in “groundbreaking cryptanalytic capabilities to defeat 
adversarial cryptography and exploit internet traffic” included 
notable $100mn+ increases in two programs under Cryptanalysis 
& Exploitation Services: “Cryptanalytic IT Systems” (to $247mn), 
and the cryptically named “PEO Program C” (to $360mn).22

4.2. Is NSA breaking 1024-bit Diffie-Hellman?
Our calculations suggest that it is plausibly within NSA’s 
resources to have performed number field sieve precom-
putations for a small number of 1024-bit Diffie-Hellman 
groups. This would allow them to break any key exchanges 
made with those groups in close to real time. If true, this 
would answer one of the major cryptographic questions 
raised by the Edward Snowden leaks: How is NSA defeating 
the encryption for widely used VPN protocols?

Virtual private networks are widely used for tunneling 
business or personal traffic across potentially hostile net-
works. We focus on the IPsec VPN protocol using the IKE 
protocol for key establishment and parameter negotiation 
and the Encapsulating Security Payload (ESP) protocol for 
protecting packet contents.

IKE. There are two versions, IKEv1 and IKEv2, which dif-
fer in message structure but are conceptually similar. For 
the sake of brevity, we will use IKEv1 terminology.10

Each IKE session begins with a Phase 1 handshake in 
which the client and server select a Diffie-Hellman group 
from a small set of standardized parameters and perform a 
key exchange to establish a shared secret. The shared secret 
is combined with other cleartext values transmitted by each 
side, such as nonces and cookies, to derive a value called 
SKEYID. In IKEv1, SKEYID also incorporates a Pre-Shared 
Key (PSK) used for authentication.

The resulting SKEYID is used to encrypt and authenticate 
a Phase 2 handshake. Phase 2 establishes the parameters 
and key material, KEYMAT, for protecting the subsequently 
tunneled traffic. Ultimately, KEYMAT is derived from SKEYID, 
additional nonces, and the result of an optional Phase 2 
Diffie-Hellman exchange.

NSA’s VPN exploitation process. Documents published 
by Der Spiegel describe NSA’s ability to decrypt VPN traffic 
using passive eavesdropping and without message injection 
or man-in-the-middle attacks on IPsec or IKE. Figure 3 illus-
trates the flow of information required to decrypt the tun-
neled traffic.

When the IKE/ESP messages of a VPN of interest are 
collected, the IKE messages and a small amount of ESP 

For 1024-bit precomputation, the total time complex-
ity can be expected to increase by a factor of 1220 using the 
complexity formula, while space complexity increases by its 
square root, approximately 35. These ratios are relevant for 
both factorization and discrete logarithm since they have the 
same asymptotic behavior. For DH-1024, we get a total cost 
estimate for the precomputation of about 6mn core-years. In 
practice, it is not uncommon for estimates based merely on 
the complexity formula to be off by a factor of 10. Estimates 
of Table 2 must therefore be considered with due caution.

For 1024-bit descent, we experimented with our early-
abort implementation to inform our estimates for descent 
initialization, which should dominate the individual dis-
crete logarithm computation. For a random target in Oakley 
Group 2, initialization took 22 core-days, and yielded a few 
primes of at most 130 bits to be descended further. In twice 
this time, we reached primes of about 110 bits. At this point, 
we were certain to have bootstrapped the descent and could 
continue down to the smoothness bound in a few more core-
days if proper sieving software were available. Thus we esti-
mate that a 1024-bit descent would take about 30 core-days, 
once again easily parallelizable.

Costs in hardware. Although several million core-years is 
a massive computational effort, it is not necessarily out of 
reach for a nation-state. At this scale, significant cost savings 
could be realized by developing application-specific hardware 
given that sieving is a natural target for hardware implemen-
tation. To our knowledge, the best prior description of an 
Application-Specific Integrated Circuit (ASIC) implemen-
tation of 1024-bit sieving is the 2007 work of Geiselmann 
and Steinwandt.8 Updating their estimates for modern 
techniques and adjusting parameters for discrete logarithm 
allows us to extrapolate the financial and time costs.

We increase their chip count by a factor of ten to sieve more 
and save on linear algebra as above, giving an estimate of 3mn 
chips to complete sieving in one year. Shrinking the dies from 
the 130 nanometer technology node used in the paper to a 
more modern size reduces costs as transistors are cheaper at 
newer technologies. With standard transistor costs and utili-
zation, it would cost about $2 per chip to manufacture after 
fixed design and tape-out costs of roughly $2mn.14 This sug-
gests that an $8mn investment would buy enough ASICs to 
complete the DH-1024 sieving precomputation in one year. 
Since a step of descent uses sieving, the same hardware could 
likely be reused to speed calculations of individual logarithms.

Estimating the financial cost for the linear algebra is 
more difficult since there has been little work on designing 
chips that are suitable for the larger fields involved in dis-
crete logarithm. To derive a rough estimate, we can begin 
with general purpose hardware and the core-year estimate 
from Table 2. Using the 300,000 CPU core Titan supercom-
puter it would take four years to complete the 1024-bit lin-
ear algebra stage (notwithstanding the fact that estimates 
from Table 2 are known to be extremely coarse, and could be 
optimistic by a factor of maybe 10). Titan was constructed 
in 2012 for $94mn, suggesting a cost of under $400mn in 
supercomputers to finish this step in a year. In the context of 
factorization, moving linear algebra from general purpose 
CPUs to ASICs has been estimated to reduce costs by a factor 
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traffic are sent to the Cryptanalysis and Exploitation Services 
(CES).21, 23, 25 Within the CES enclave, a specialized “attack 
orchestrator” attempts to recover the ESP decryption key with 
assistance from high-performance computing resources as 
well as a database of known PSKs (“CORALREEF”).21, 23, 25 If 
the recovery was successful, the decryption key is returned 
from CES and used to decrypt the buffered ESP traffic such 
that the encapsulated content can be processed.21, 24

Evidence for a discrete logarithm attack. The ability to 
decrypt VPN traffic does not necessarily indicate a defeat of 
Diffie-Hellman. There are, however, several features of the 
described exploitation process that support this hypothesis.

The IKE protocol has been extensively analyzed3,15 and is not 
believed to be exploitable in standard configurations under 
passive eavesdropping attacks. Absent a vulnerability in the 
key derivation function or transport encryption, the attacker 
must recover the decryption keys. This requires the attacker to 
calculate SKEYID generated from the Phase 1 Diffie-Hellman 
shared secret after passively observing an IKE handshake.

While IKE is designed to support a range of Diffie-Hellman 
groups, our Internet-wide scans (Section 4.3) show that the 
vast majority of IKE endpoints select one particular 1024-bit 
Diffie-Hellman group even when offered stronger groups. 
Conducting an expensive, but feasible, precomputation for 
this single 1024-bit group (Oakley Group 2) would allow the 

efficient recovery of a large number of Diffie-Hellman shared 
secrets used to derive SKEYID and the subsequent KEYMAT.

Given an efficient oracle for solving the discrete loga-
rithm problem, attacks on IKE are possible provided that the 
attacker can obtain the following: (1) a complete two-sided 
IKE transcript, and (2) any PSK used for deriving SKEYID in 
IKEv1. The available documents describe both of these as 
explicit prerequisites for the VPN exploitation process out-
lined above and provide the reader with internal resources 
available to meet these prerequisites.23

Of course, this explanation is not dispositive and the possi-
bility remains that NSA could defeat VPN encryption using 
alternative means. A published NSA document refers to the use 
of a router “implant” to allow decryption of IPsec traffic, indicat-
ing the use of targeted malware is possible. However, this 
implant “allows passive exploitation with just ESP”23 with-
out the prerequisite of collecting the IKE handshake mes-
sages. This indicates it is an alternative mechanism to the 
attack described above.

The most compelling argument for a pure cryptographic 
attack is the generality of NSA’s VPN exploitation process. 
This process appears to be applicable across a broad swath 
of VPNs without regard to endpoint’s identity or the ability 
to compromise individual endpoints.

4.3. Effects of a 1024-bit break
In this section, we use Internet-wide scanning to assess the 
impact of a hypothetical DH-1024 break on IKE, SSH, and 
HTTPS. Our measurements, performed in early 2015, indicate 
that these protocols would be subject to widespread compro-
mise by a nation-state attacker who had the resources to invest 
in precomputation for a small number of 1024-bit groups.

IKE. We measured how IPsec VPNs use Diffie-Hellman 
in practice by scanning a 1% random sample of the pub-
lic IPv4 address space for IKEv1 and IKEv2 (the protocols 
used to initiate an IPsec VPN connection) in May 2015. We 
used the ZMap UDP probe module to measure support for 
Oakley Groups 1 and 2 (two popular 768- and 1024-bit, built-
in groups) and which group servers prefer. Of the 80K hosts 
that responded with a valid IKE packet, 44.2% were will-
ing to negotiate a connection using one of the two groups. 
We found that 31.8% of IKEv1 and 19.7% of IKEv2 servers 
supported Oakley Group 1 (768-bit) while 86.1% and 91.0% 
respectively supported Oakley Group 2 (1024-bit). In our 
sample of IKEv1 servers, 2.6% of profiled servers preferred 
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Figure 3. NSA’s VPN decryption infrastructure. This classified 
illustration published by Der Spiegel25 shows captured IKE 
handshake messages being passed to a high-performance 
computing system, which returns the symmetric keys for ESP 
session traffic. The details of this attack are consistent with an 
efficient break for 1024-bit Diffie-Hellman.

Vulnerable servers, if the attacker can precompute for…

All 512-bit groups All 768-bit groups One 1024-bit group Ten 1024-bit groups

HTTPS Top Million w/ active downgrade 45,100 (8.4%) 45,100 (8.4%) 205,000 (37.1%) 309,000 (56.1%)
HTTPS Top Million 118 (0.0%) 407 (0.1%) 98,500 (17.9%) 132,000 (24.0%)
HTTPS Trusted w/ active downgrade 489,000 (3.4%) 556,000 (3.9%) 1,840,000 (12.8%) 3,410,000 (23.8%)
HTTPS Trusted 1,000 (0.0%) 46,700 (0.3%) 939,000 (6.56%) 1,430,000 (10.0%)
IKEv1 IPv4 – 64,700 (2.6%) 1,690,000 (66.1%) 1,690,000 (66.1%)
IKEv2 IPv4 – 66,000 (5.8%) 726,000 (63.9%) 726,000 (63.9%)
SSH IPv4 – – 3,600,000 (25.7%) 3,600,000 (25.7%)

Table 3. Estimated impact of Diffie-Hellman attacks in early 2015g.

g We used Internet-wide scanning to estimate the number of real-world servers for which typical connections could be compromised by attackers with various levels of  
computational resources. For HTTPS, we provide figures with and without downgrade attacks on the chosen ciphersuite. All others are passive attacks.
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for its Suite B cryptographic algorithms and would replace 
them with algorithms resistant to quantum computers.16 
However, since no fully vetted and standardized quantum-
resistant algorithms exist currently, elliptic curves remain 
the most secure choice for public key operations.

Increase minimum key strengths
To protect against the Logjam attack, server operators should 
disable DHE_EXPORT and configure DHE ciphersuites to use 
primes of 2048 bits or larger. Browsers and clients should 
raise the minimum accepted size for Diffie-Hellman groups 
to at least 1024 bits in order to avoid downgrade attacks.

Don’t deliberately weaken cryptography
The Logjam attack illustrates the fragility of cryptographic 
“front doors.” Although the key sizes originally used in 
DHE_EXPORT were intended to be tractable only to NSA, two 
decades of algorithmic and computational improvements 
have significantly lowered the bar to attacks on such key 
sizes. Despite the eventual relaxation of cryptography export 
restrictions and subsequent attempts to remove support for 
DHE_EXPORT, the technical debt induced by the additional 
complexity has left implementations vulnerable for decades. 
Like FREAK,1 our results warn of the long-term debilitating 
effects of deliberately weakening cryptography.

6. CONCLUSION
We find that Diffie-Hellman key exchange, as used in prac-
tice, is often less secure than widely believed. The problems 
stem from the fact that the number field sieve for discrete 
logarithms allows an attacker to perform a single precompu-
tation that depends only on the group, after which comput-
ing individual logarithms in that group has a far lower cost. 
Although this is well known to cryptographers, it apparently 
has not been widely understood by system builders. Likewise, 
many cryptographers did not appreciate that a large fraction 
of Internet communication depends on a few small, widely 
shared groups.

A key lesson is that cryptographers and creators of practical 
systems need to work together more effectively. System build-
ers should take responsibility for being aware of applicable 
cryptanalytic attacks. Cryptographers should involve them-
selves in how cryptography is actually being applied, such 
as through engagement with standards efforts and software 
review. Bridging the perilous gap that separates these com-
munities will be essential for keeping future systems secure.
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the 768-bit Oakley Group 1 and 66.1% preferred the 1024-bit 
Oakley Group 2. For IKEv2, 5.8% of profiled servers chose 
Oakley Group 1, and 63.9% chose Oakley Group 2.

SSH. All SSH handshakes complete either a finite field or 
elliptic curve Diffie-Hellman exchange. The protocol explic-
itly defines support for Oakley Group 2 (1024-bit) and Oakley 
Group 14 (2048-bit) but also allows a server-defined group to 
be negotiated. We scanned 1% random samples of the pub-
lic IPv4 address space in April 2015. We found that 98.9% of 
SSH servers supported the 1024-bit Oakley Group 2, 77.6% 
supported the 2048-bit Oakley Group 14, and 68.7% sup-
ported a server-defined group.

During the SSH handshake, the server selects the cli-
ent’s highest priority mutually supported key exchange 
algorithm. To estimate what servers will prefer in practice, 
we performed a scan in which we mimicked the algorithms 
offered by OpenSSH 6.6.1p1, the latest version of OpenSSH. 
In this scan, 21.8% of servers preferred the 1024-bit Oakley 
Group 2, and 37.4% preferred a server-defined group. 10% of 
the server-defined groups were 1024-bit, but, of those, nearly 
all provided Oakley Group 2 rather than a custom group.

Combining these equivalent choices, we find that a 
nation-state adversary who performed NFS precomputa-
tions for the 1024-bit Oakley Group 2 could passively eaves-
drop on connections to 3.6mn (25.7%) publicly accessible 
SSH servers.

HTTPS. Our 2015 scans found that DHE was commonly 
deployed on web servers. 68.3% of Alexa Top Million sites 
supported DHE, as did 23.9% of sites with browser-trusted 
certificates. Of the Top Million sites that supported DHE, 
84% used a 1024-bit or smaller group, with 94% of these 
using one of five groups.

Despite widespread support for DHE, a passive eavesdrop-
per can only decrypt connections that organically agree to 
use Diffie-Hellman. We estimated the number of sites for 
which this would occur by offering the same sets of cipher-
suites as Chrome, Firefox, and Safari. We found that browser 
connections to approximately 24% of browser connections 
with HTTPS-enabled Top Million sites (and 10% of all sites 
with browser-trusted sites certificates) would negotiate DHE 
using one of the ten most popular 1024-bit primes. After 
completing the NFS precomputation for only the most pop-
ular 1024-bit prime, an adversary could passive eavesdrop 
on browser connections to 17.9% of  Top Million sites.

5. RECOMMENDATIONS
In this section, we present concrete recommendations to 
recover the expected security of Diffie-Hellman.

Transition to elliptic curves
Transitioning to Elliptic Curve Diffie-Hellman (ECDH) key 
exchange avoids all known feasible cryptanalytic attacks. 
Current elliptic curve discrete logarithm algorithms do not 
gain as much of an advantage from precomputation. In addi-
tion, ECDH keys are shorter and computations are faster. 
We recommend transitioning to elliptic curves; this is the 
most effective solution to the vulnerabilities in this paper. 
We note that in August 2015, NSA announced that it was 
planning to transition away from elliptic curve cryptography 
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