
Security Analysis of the Estonian Internet Voting System

Drew Springall† Travis Finkenauer† Zakir Durumeric†

Jason Kitcat‡ Harri Hursti Margaret MacAlpine J. Alex Halderman†

†University of Michigan, Ann Arbor, MI, U.S.A.
‡Open Rights Group, U.K.

For additional materials and contact information, visit estoniaevoting.org.

ABSTRACT
Estonia was the first country in the world to use Internet
voting nationally, and today more than 30% of its ballots
are cast online. In this paper, we analyze the security of
the Estonian I-voting system based on a combination of
in-person election observation, code review, and adversarial
testing. Adopting a threat model that considers the advanced
threats faced by a national election system—including dis-
honest insiders and state-sponsored attacks—we find that
the I-voting system has serious architectural limitations and
procedural gaps that potentially jeopardize the integrity of
elections. In experimental attacks on a reproduction of the
system, we demonstrate how such attackers could target
the election servers or voters’ clients to alter election results
or undermine the legitimacy of the system. Our findings
illustrate the practical obstacles to Internet voting in the
modern world, and they carry lessons for Estonia, for other
countries considering adopting such systems, and for the
security research community.

1. INTRODUCTION
Several countries have experimented with casting votes

over the Internet, but today, no nation uses Internet voting
for binding political elections to a larger degree than Esto-
nia [42]. When Estonia introduced its online voting system
in 2005, it became the first country to offer Internet voting
nationally. Since then, it has used the system in local or na-
tional elections seven times, and, in the most recent election,
over 30% of participating voters cast their ballots online [19].
People around the world look to Estonia’s example, and some
wonder why they can’t vote online too [54].
Nevertheless, the system remains controversial. Many

Estonians view Internet voting as a source of national pride,
but one major political party has repeatedly called for it
to be abandoned [31]. Although Estonia’s Internet Voting
Committee maintains that the system “is as reliable and
secure as voting in [the] traditional way” [20], its security has
been questioned by a variety of critics, including voices within

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
CCS’14, November 3–7, 2014, Scottsdale, Arizona, USA.
ACM 978-1-4503-2957-6/14/11.
http://dx.doi.org/10.1145/2660267.2660315.

the country (e.g. [47, 51]) and abroad (e.g. [61]). Despite
these concerns, the system has not previously been subjected
to a detailed independent security analysis.
For these reasons, the Estonian Internet voting (I-voting)

system represents a unique and important case study in
election security. Its strengths and weaknesses can inform
other countries considering the adoption of online voting, as
well as the design of future systems in research and practice.
In this study, we evaluate the system’s security using a

combination of observational and experimental techniques.
We observed operations during the October 2013 local elec-
tions, conducted interviews with the system developers and
election officials, assessed the software through source code
inspection and reverse engineering, and performed tests on
a reproduction of the complete system in our laboratory.
Our findings suggest the system has serious procedural and
architectural weaknesses that expose Estonia to the risk that
attackers could undetectably alter the outcome of an election.
Most Internet voting schemes proposed in the research

literature (e.g. [1,9]) use cryptographic techniques to achieve
a property called end-to-end (E2E) verifiability [8]. This
means that anyone can confirm that the ballots have been
counted accurately without having to trust that the comput-
ers or officials are behaving honestly. In contrast, Estonia’s
system is not E2E verifiable. It uses a conceptually simpler
design at the cost of having to implicitly trust the integrity of
voters’ computers, server components, and the election staff.
Rather than proving integrity through technical means,

Estonia relies on a complicated set of procedural controls, but
these procedures are inadequate to achieve security or trans-
parency. During our in-person observations and in reviewing
official videos of the 2013 process, we noted deviations from
procedure and serious lapses in operational security, which
leave the system open to the possibility of attacks, fraud,
and errors. Transparency measures, such as video recordings
and published source code, were incomplete and insufficient
to allow outside observers to establish the integrity of results.
The threats facing national elections have shifted signif-

icantly since the Estonian system was designed more than
a decade ago. Cyberwarfare, once a largely hypothetical
threat, has become a well documented reality [49, 60, 64, 65],
and attacks by foreign states are now a credible threat to
a national online voting system. As recently as May 2014,
attackers linked to Russia targeted election infrastructure in
Ukraine and briefly delayed vote counting [10]. Given that
Estonia is an EU and NATO member that borders Russia,
its threat model should not discount the possibility that a
foreign power would interfere in its elections.



Figure 1: I-voting client — Estonians use special client
software and national ID smartcards to cast votes online.

To test the feasibility of such attacks, we reproduced the
I-voting system in a lab environment and played the role of
a sophisticated attacker during a mock election. We were
able to develop client-side attacks that silently steal votes
on voters’ own computers, bypassing safeguards such as the
national ID smartcard system and smartphone verification
app. We also demonstrate server-side attacks that target
the implicitly trusted vote counting server. By introducing
malware into this server, a foreign power or dishonest insider
could alter votes between decryption and tabulation, shifting
results in favor of the attacker’s preferred candidate.
We conclude that there are multiple ways that state-level

attackers, sophisticated online criminals, or dishonest insid-
ers could successfully attack the Estonian I-voting system.
Such an attacker could plausibly change votes, compromise
the secret ballot, disrupt elections, or cast doubt on the
integrity of results. These problems are difficult to mitigate,
because they stem from basic architectural choices and fun-
damental limitations on the security and transparency that
can be provided by procedural controls. For these reasons,
we recommend that Estonia discontinue the I-voting system.
We returned to Estonia in May 2014 and shared these

findings with election officials and the public. Unfortunately,
government responses ranged from dismissive to absurd. The
National Electoral Committee stated that the threat vec-
tors we consider have already been adequately accounted
for in the design, and that the attacks we describe are in-
feasible [26]. We disagree on both counts, but readers can
review the evidence and reach their own conclusions. Prime
Minister Taavi Rõivas and President Toomas Hendrik Ilves
insinuated to the media that we had been bought off by a
rival political party seeking to disparage the system. This
we vehemently deny, but it illustrates how the Estonian
public discourse concerning election technology has become
dominated by partisanship. We hope that the country can
separate technical reality from political rhetoric in time to
avert a major attack.

2. BACKGROUND
Our analysis focuses on the Estonian I-voting system as

it was used for the 2013 municipal elections [22]. In these
elections, Internet voting was available for seven days, from
October 10–16, and the main in-person poll took place on

Figure 2: Verification app — A smartphone app allows
voters to confirm that their votes were correctly recorded.
We present two strategies an attacker can use to bypass it.

October 20. Results were declared that evening. Accord-
ing to official statistics [19], 133,808 votes were cast online,
corresponding to 21.2% of participating voters.1
In this section, we review the design and operation of the I-

voting system. Figure 4 gives an overview of the interactions
between the main system components.

2.1 National ID Cards
An essential building block of the I-voting system is Esto-

nia’s national ID infrastructure [13], which plays a central
role in the country’s high-tech and e-government strategy [37].
Estonian national ID cards are smartcards with the ability
to perform cryptographic functions. With the use of card
readers and client software, Estonians can authenticate to
websites (via TLS client authentication [53]) and make legally
binding signatures on documents [15]. The cards are pop-
ularly used for online banking and accessing e-government
services [21]. In the I-voting system, voters use their ID
cards to authenticate to the server and to sign their ballots.
Each card contains two RSA key pairs, one for authenti-

cation and one for making digital signatures. Certificates
binding the public keys to the cardholder’s identity are stored
on the card and in a public LDAP database [16]. The card
does not allow exporting private keys, so all cryptographic
operations are performed internally. As an added safeguard,
each key is associated with a PIN code, which must be
provided to authorize every operation.
Estonians can also use mobile phones with special SIM

cards for authentication and signing, through a system called
Mobile-ID [14]. In the 2013 election, 9% of online votes were
cast using this method [19]. We exclude Mobile-ID from
our analysis because we did not have access to the external
infrastructure that would be needed to test it.

2.2 I-Voting Server Infrastructure
The majority of the I-voting server source code is published

to a GitHub repository 2–3 weeks prior to the election [30].
The server infrastructure is configured in a public ceremony
one week before the election and consists of four machines:
1Estonia used the system again, shortly after we made our
findings public, for May 2014 European Parliament elections.
There were only minor changes to the software and proce-
dures. The fraction of votes cast online increased to 31%.

2



Vote forwarding server (VFS/HES) The VFS (or
HES in Estonian) is the only publicly accessible server. It
accepts HTTPS connections from the client software, verifies
voter eligibility, and acts as an intermediary to the backend
vote storage server, which is not accessible from the Internet.

Vote storage server (VSS/HTS) The VSS is a backend
server that stores signed, encrypted votes during the online
voting period. Upon receiving a vote from the VFS, it
confirms that the vote is formatted correctly and verifies the
voter’s digital signature using an external OCSP server.

Log server This server is an internal logging and moni-
toring platform that collects events and statistics from the
VFS and VSS. The source code and design have not been
published. While this server is not publicly accessible, it can
be accessed remotely by election staff.

Vote counting server (VCS/HLR) The VCS is never
connected to a network and is only used during the final
stage of the election. Officials use a DVD to copy encrypted
votes (with their signatures removed) from the VSS. The
VCS is attached to a hardware security module (HSM) that
contains the election private key. It uses the HSM to decrypt
the votes, counts them, and outputs the official results.

2.3 Voting Processes
The I-voting system uses public key cryptography to pro-

vide a digital analog of the “double envelope” ballots often
used for absentee voting [24]. Conceptually, an outer en-
velope (a digital signature) establishes the voter’s identity,
while an inner envelope (public key encryption) protects the
secrecy of the ballot. Once each voter’s eligibility has been
established, the signature is stripped off, leaving a set of
anonymous encrypted ballots. These are moved to a phys-
ically separate machine, which decrypts and counts them.

Casting At the start of each election, the election au-
thority publishes a set of voting client applications for Win-
dows, Linux, and Mac OS, which can be downloaded from
https://valimised.ee. The client is customized for each elec-
tion and includes an election-specific public key for encrypt-
ing the voted ballot and a TLS certificate for the server.
Figure 3a shows the protocol for casting a vote. The voter

begins by launching the client application and inserting her
ID card. She enters the PIN associated with her authenti-
cation key, which is used to establish a client-authenticated
TLS connection to the VFS. The client verifies the server’s
identity using a hard-coded certificate. The server confirms
the voter’s eligibility based on her public key and returns
the list of candidates for her district [11].
The voter selects her choice c and enters her signing key

PIN. The client pads c using RSA-OAEP and randomness r,
encrypts it with using the 2048-bit election public key, and
signs the encrypted vote with the voter’s private key. The
signed and encrypted vote is sent to the server, which asso-
ciates it with an unguessable unique token x and returns x to
the client. The client displays a QR code containing r and x.
As a defense against coercion, voters are allowed to vote

multiple times during the online election period, with only the
last vote counted. All earlier votes are revoked but retained
on the storage server for logging purposes. While the client
indicates whether the user has previously voted, it does not
display the number of times. The voter can also override her
electronic vote by voting in person on election day.

Voting Client Election Servers

TLS Client Auth

Verify if eligible voter
Find set of candidates C

C

Voter picks candidate c ∈ C
r ← {0, 1}160
b← EncPKelect

(Padr(c))
σ ← SignSKvoter

(b)
v := (b, σ)

v

Assign v vote ID x

x

Display QR code: (x, r)

(a) Vote casting process

Verification App Election Servers

Scan QR code (x, r)

x

Find ballot b with vote ID x
Find set of candidates C

b, C

if ∃ c′ s.t. b = EncPKelect
(Padr(c

′)):
Display c′

Voter checks: c′ ?
= c

else: Display error

(b) Vote verification process

Storage Server Counting Server

B ← {}
For each vote v:

(b, σ) := v
VerifyPKvoter

(b, σ)
B ← B ∪ {b}

B

For each c ∈ C:
counts[c]← 0

For each b ∈ B:
c← DecSKelect

(b)
counts[c]← counts[c]+1

Output counts

(c) Vote tabulation process

Figure 3: I-voting system protocols

3



Voting Client

Vote Forwarding
Server

Vote Storage
Server

Verification App

Vote Counting
Server

Log server

DVD

HTTPS
(Client Auth) HTTPS

HSM

Election
Private Key

Election
Public Key

Election
Public Key

QR Code

D
at

a 
C

en
te

r
V

ot
er

 C
om

pu
te

r

V
ot

er
 S

m
ar

tp
ho

ne

Internet

P
ub

lic
 C

ou
nt

National
ID Card

Figure 4: I-voting system overview — Major components
of the system, and how information flows among them.

Verification The voter can confirm that her vote was
correctly recorded using a smartphone app provided by the
election authority [25, 27, 28], as seen in Figure 2. This
protocol is shown in Figure 3b. The app scans the QR
code displayed by the voting client to obtain r and x. It
sends x to the election server, which returns the encrypted
vote b (but not the signature) as well as a list of possible
candidates. The app uses r to encrypt a simulated vote
for each possible candidate and compares the result to the
encrypted vote received from the server. If there is a match,
the app displays the corresponding candidate, which the
voter can check against her intended choice. The server
allows verification to be performed up to three times per
vote and up to 30 minutes after casting.

Tabulation Figure 3c shows the sequence that occurs
at the conclusion of an election. After online voting has
ended, the storage server processes the encrypted votes to
reverify the signatures and remove any revoked or invalid
votes. During a public counting session, officials export the
set of valid votes after stripping off the signatures, leaving
only anonymous encrypted votes. These are burned to a
DVD to transfer them to the counting server.
The counting server is attached to an HSM that contains

the election private key. The server uses the HSM to decrypt
each vote and tallies the votes for each candidate. Officials
export the totals by burning them to a DVD. These results
are combined with the totals from in-person polling stations
and published as the overall results of the election.

3. OBSERVATIONS
The first part of our analysis follows an observational

methodology. Four of the authors (Halderman, Hursti, Kit-
cat, and MacAlpine) visited Estonia as officially accredited
election observers during the October 2013 municipal elec-
tions and witnessed the operation of the I-voting servers.
During that time, they also met with election officials and
the I-voting software developers in Tallinn and Tartu. Later,
we closely reviewed published artifacts from the election: the
server source code [30], written procedures [17], and nearly
20 hours of official videos that recorded the I-voting configura-
tion, administration, and counting processes [18]. Ultimately,
we identified a range of problems related to poor procedu-
ral controls, lapses in operational security, and insufficient
transparency measures.

3.1 Inadequate Procedural Controls
While the Internet Voting Committee (the administrative

body that runs the system) has published extensive written
procedures covering many steps in the election process [17],
we observed that some procedures were not consistently
followed and others were dangerously incomplete.
Procedures for handling anomalous conditions that could

imply an attack appear to be inadequately specified or do
not exist. For example, tamper-evident seals are used on the
server racks in the data center.2 When asked what would
happen if the seals were found to be compromised, election
staff responded that they were unsure.
Anomalous situations that occurred during the 2013 elec-

tion were handled in an ad hoc manner, sometimes at the
discretion of a single individual. On multiple occasions, we
observed as data center staff restarted server processes to
resolve technical glitches, and repeated failed commands
rather than troubleshooting the root cause. Similar issues
were observed during tabulation when the election officials
attempted to boot the vote storage server to export the
encrypted votes. The machine reported errors stating that
the drive configuration had changed—a possible indication
of tampering. Instead of investigating the cause of the alert,
staff bypassed the message.
Some procedures appeared to change several times over

the observation period. For example, observers were initially
allowed to film and photograph inside the server room, but
were prohibited the next day because of the unsubstantiated
claim of “possible electronic interference.” In a similarly
abrupt change in procedure, observers were required to leave
their mobile phones outside the data center after multiple
days where this was not the policy. Rewriting the rules
on the fly suggests that the procedures had not been ade-
quately thought out or were insufficiently defined for staff to
implement them consistently.
Even when procedural safeguards were clear, they were

not always followed. For example, procedure dictates that
two operators should be present when performing updates
and backups [11]. Yet, on October 14, we observed that a
lone staff member performed these tasks. Without a second
operator present, the security of the system relies on the
integrity of a single staff member.

2We note that tamper-evident seals like those used in Estonia
are known to be easy to defeat using widely available tools [38–
41]. Their usefulness for election security has been questioned
in other countries [3, 66].

4



3.2 Lax Operational Security
Since the I-voting system treats parts of the server infras-

tructure as implicitly trusted, the processes used to install
and configure those servers are crucial for the security of
the election. We witnessed numerous serious lapses in opera-
tional security both during our on-site observations and in
the official videos released by the Internet Voting Committee.
Pre-election setup Several problems can be seen in the
official videos of the pre-election setup process, which takes
place in the National Electoral Committee’s offices in Tallinn.
The videos show election workers downloading software

for use in the setup process from a public website over an
unsecured HTTP connection (Figure 6). A network-based
man-in-the-middle attacker could compromise these applica-
tions and introduce malware into the configuration process.
In other instances. workers unintentionally typed pass-

words and national ID card PINs in view of the camera
(Figures 7 and 8). These included the root passwords for the
election servers. Similar problems occurred during daily main-
tenance operations in the data center. Physical keys to the
server room and rack were revealed to observers; these keys
could potentially be duplicated using known techniques [45].
The most alarming operational security weakness during

pre-election setup was workers using an “unclean” personal
computer to prepare election client software for distribution
to the public. As seen in Figure 5, the desktop has shortcuts
for an online gambling site and a BitTorrent client, suggesting
that this was not a specially secured official machine. If
the computer used to prepare the client was infected with
malware, malicious code could have spread to voters’ PCs.
Daily maintenance We observed further operational
security weaknesses during daily maintenance procedures
that took place during the voting period. The I-voting
servers are hosted at a government data center in Tallinn,
and workers go there to perform operations at the server
consoles. While there were security video cameras at the data
center, there appeared to be no 24/7 security personnel nor
any definitive information on who monitored the cameras.
Standard practice during daily maintenance is for workers

to log in to the election servers under the root account
and perform operations at the shell. Logging in as root
is contrary to security best practice, as it simplifies many
attacks, disables user-based privilege separation for operator
functions, and increases the risk of human error.
Unencrypted daily backups were casually transported in

workers’ personal backpacks. DVDs holding updated voter
lists from the population register were handled in a similarly
casual way after having been created, we were told, by a
member of staff at their own computer. We did not observe
any audit trail or checks on the provenance of these DVDs,
which were used daily at the heart of the I-voting system.
Tabulation The tabulation process at the end of the
election was also concerning. After the votes were decrypted
on the counting server, an unknown technical glitch prevented
workers from writing the official counts and log files to DVD.
Instead, officials decided to use a worker’s personal USB
stick to transfer the files to an Internet-connected Windows
laptop, where the results were officially signed. This USB
stick had been previously used and contained other files, as
shown in Figure 10. This occurred despite protest from an
audience member and deviated significantly from the written
procedure, adding multiple potential attack vectors. Malware

present on the laptop or USB stick could have altered the
unsigned results, or malware on the USB stick could have
been transferred to the trusted counting server.

These instances illustrate a pattern of operational secu-
rity lapses on the part of the workers who operated the
I-voting system. This is particularly alarming given the high
degree of trust the I-voting system design requires of the
election servers, client software, and the election workers
themselves.

3.3 Insufficient Transparency
The election officials have implemented a number of trans-

parency measures, including allowing in-person public ob-
servation, publishing videos of operator tasks, and releasing
large parts of the server source code. While these measures
appear to be well intended, they are incomplete and insuffi-
cient to fully establish the integrity of election results.
One limitation is that these measures cannot show whether

malicious actions were performed on the servers or hard disks
before recording and observation commenced. In practice,
they also do not capture everything going on in the facilities.
On many occasions, there were multiple machines or screens
in use simultaneously but only a single camera.
Although we attempted to follow these simultaneous op-

erations during our in-person observations, on occasion the
operators appeared to be deliberately evading us. For in-
stance, on Monday, October 14, we were physically present in
the server room when one of the servers produced abnormal
output, which appeared to be a failure of the update oper-
ation. The official video recording was following the other
display, and the operator, upon seeing the error message,
quickly flushed it from the screen. In another instance when
an error appeared on the server console, an election worker
quickly cleared the display and then asked us to rotate out
of the room and let other observers in, allowing him a block
of observation-free time.
An auditor from a major international consulting firm had

been hired by the Internet Voting Committee, and his report
also documents procedural and operational shortcomings [56].
However, the auditor’s role was chiefly to observe, and he
was not provided with the access needed to confirm secure
operation of the system.
Election officials have made large parts of the server soft-

ware open source [30]. This is a positive measure as it allows
independent review and assessment—indeed, our study made
extensive use of the code. However, security-critical pieces of
code are missing from the published sources, including the
entire client application and code that is executed on every
server machine (see Section 4.1).
Officials told us that the client source is not released (and

furthermore, the client binary is obfuscated) because they
are concerned that attackers might modify it and distribute
a trojan lookalike. Creating client-side malware is feasible
without the source, as we show in Section 5.1. At the same
time, keeping source code secret prevents the public from
understanding what they are being asked to run on their com-
puters, and it increases the risk that any centrally introduced
malicious changes to the client will go undetected.
As these transparency measures are practiced today, the

videos, public observation, and open-source components risk
providing a false sense of security. It is possible for the sys-
tems to be corrupted prior to videotaping, for media used to
update servers to be maliciously modified, or for unpublished

5



Figure 5: Unsecured build system — Operators used a
PC containing other software, including PokerStars.ee, to
sign the official voting client for public distribution. This
risks infecting the client with malware spread from the PC.

Figure 6: Insecure software downloads — Operators
downloaded software over insecure connections for use in
pre-election setup. An attacker who injected malware into
these downloads might be able to compromise the process.

Figure 7: Keystrokes reveal root passwords — Videos
posted by officials during the election show operators typing,
inadvertently revealing root passwords for election servers.

Figure 8: Video shows national ID PINs — During pre-
election setup, someone types the secret PINs for their na-
tional ID card in full view of the official video camera.

Figure 9: Posted Wi-Fi credentials — The official video
of the pre-election process reveals credentials for the election
officials’ Wi-Fi network, which are posted on the wall.

Figure 10: Personal USB stick — Against procedures, an
official used a USB stick, containing personal files, when
moving the official election results off of the counting server.

6



pieces of software to contain errors or malicious code—all
invisible to the public under current transparency measures.
To illustrate these limitations, we conducted an experi-

mental server-side attack on a reproduction of the system, as
detailed in Section 5.2. We have published a series of videos
(see https://estoniaevoting.org/videos/) matching the proce-
dures in the official videos step-by-step, but where the result
of the election is dishonest because of malware surreptitiously
introduced before the start of pre-election setup.

3.4 Vulnerabilities in Published Code
The published portions of the I-voting server software [30]

contain 17,000 lines of code, with 61% in Python, 37% in
C++, and the remainder in shell scripts. The codebase is
quite complex, with a large number of external dependencies,
and exhaustively searching it for vulnerabilities would be
a challenging task well beyond the scope of this project.
We understand that volunteers from the Estonian security
community have already audited it—a testament to the
virtues of publishing code. Nonetheless, we discovered some
minor bugs and vulnerabilities while examining the code in
order to conduct our other experiments. We disclosed these
issues to the Internet Voting Committee in May 2014.
One of the problems we found allows a denial-of-service

attack against the voting process. If a client sends an HTTP
request containing unexpected header fields, the server logs
the field names to disk. By sending many specially crafted
requests containing fields with very long names, an attacker
can exhaust the server’s log storage, after which it will fail
to accept any new votes. In the 2013 election, the size of
the log partition was 20GB. We estimate that an attacker
could fill it and disable further voting in about 75 minutes.
Curiously, the vulnerable code is only a few lines from the
comment, “Don’t write to disk; we don’t know how large the
value is.” This indicates that the developers were aware of
similar attacks but failed to account for all variants.
A second problem we discovered is a shell-injection vul-

nerability in a server-side user interface that is intended to
allow operators to perform pre-determined administrative
tasks. The vulnerability would allow such an operator to
execute arbitrary shell commands on the election servers
with root privileges. Under current procedures, this is moot,
since the same workers perform other administrative tasks
at the command line as root. However, shell injection vul-
nerabilities can be exceedingly dangerous [67], and the fact
that the issue was not detected in advance of the election is
a reminder that open source cannot guarantee the absence
of vulnerabilities [44].

4. EXPERIMENTAL METHODOLOGY
In order to further investigate the security of the I-voting

system, we set up a copy of the system in our lab, reproducing
the software and configuration used for the 2013 election.
While pen testing during a real election would have involved
numerous legal and ethical problems [57], our laboratory
setup allowed us to play the role of attacker in our own mock
election without any risk of interfering with real votes.

4.1 Mock Election Setup
To reproduce the I-voting servers, we used the source code

published on GitHub by the election authority [30]. We set
up the servers by following published configuration docu-
ments [17] and matching step-for-step the actions performed

by election workers in the official videos [18]. As part of this
process, we generated our own key pairs for the web server
TLS certificate and for the election key.

Some components were missing from the published server
code, but we attempted to recreate them as faithfully as
possible. First, the software for the log server, the ivote-
monitor package, was not made available; we operated a
standard rsyslog [58] server instead. Additionally, there
was no source provided for the evote_post.sh script, which
runs on every server during installation of the packages. We
attempted to reproduce its functionality based on output
shown during server configuration in the official videos.
In real elections, Estonia uses a hardware security module

(HSM) in order to handle the election private key and decrypt
votes. Since we did not have compatible hardware available,
we emulated the HSM in software using OpenSSL and Python.
Since this deviates from the fielded setup, we ensured that
none of our attacks depend on vulnerabilities in the HSM.
We set up our own certificate authority and OCSP re-

sponder as stand-ins for the national ID card PKI. This
allowed us to generate identities for mock voters. Since we
did not have access to actual Estonian ID cards, we had to
emulate them. We replaced the ID card on the client with a
software-based emulator that speaks the protocol expected
by the voting client application. Once again, we ensured
that the success of our attacks does not rely on the changes
we made. We assume for purposes of this study that the ID
cards and associated infrastructure are secure.
For the client software, we started with the official voting

client from the 2013 election, which we downloaded from the
election website [23] in October 2013. For convenience, we
focused on the Linux version of the client. Since the election
public key and server certificate are hard-coded into the
client, we needed to patch it in order to replace these with
the keys of our mock election and server. Similarly, we used
the official source code for the Android-based verification
app [29] and modified it to communicate with our server.
Virtual machines we used to reproduce the election, to-

gether with source code for our demonstration attacks, are
available online at https://www.estoniaevoting.org.

4.2 Threat Model
After setting up the mock election, we attempted to com-

promise it, allowing ourselves the resources and capabilities of
a sophisticated but realistic attacker. This attacker could be
a foreign state, a well-funded criminal organization, or a dis-
honest election insider. These kinds of attackers are difficult
to defend against, but they represent a serious and realistic
threat to modern elections given the enormous political and
financial consequences at stake.
Since the time the Estonian system was introduced, cy-

berwarfare has become a well documented reality. Chinese
espionage against U.S. companies [49], U.S. sabotage of Iran’s
nuclear enrichment program [60], and attacks by the U.K.
against European telecommunications firms [65] are just a
few examples. An increasing number of nations possess of-
fensive computer security capabilities [52], and investment
in these capabilities is reported to be growing at a significant
rate [32]. Estonia itself suffered widespread denial-of-service
attacks in 2007 that have been linked to Russia [64]. More
recently, in May 2014, attackers linked to Russia targeted
election infrastructure in Ukraine, which uses a computerized
system to aggregate results from around the country. The

7



attackers reportedly attempted to discredit the election pro-
cess by disrupting tallying and causing the system to report
incorrect results [10].
A state-sponsored attacker would have powerful capabili-

ties. We assume that they could obtain a detailed knowledge
of the I-voting system’s operation, which can be gleaned from
published sources and reverse engineering (as we did), from
insider knowledge, or by compromising systems used by the
software developers and election officials. We also assume
that if reverse engineering is required, the attacker would
have sufficient human and technical resources to accomplish
this on a short timescale. For client-side attacks, we assume
that the attacker has the ability to deliver malware to voters’
home computers. This could be done externally to the voting
system, either by purchasing pre-existing criminal resources,
such as a botnet, or by buying or discovering zero-day vul-
nerabilities in popular software. Another route would be to
compromise the voting client before its delivery to voters,
either by a dishonest insider who can alter the software or
by other attackers who can compromise the computers used
to build or distribute it.

5. ATTACKS
We used our reproduction of the I-voting system to exper-

iment with a range of attacks. The I-voting system places
significant trust in client and server components, making
these highly attractive targets for an attacker.
While certain server operations are protected by cryptog-

raphy (e.g., cast votes cannot be decrypted on the front-end
web server, since it lacks the requisite private key), in other
instances the servers are completely trusted to perform hon-
estly and correctly when handling votes. Similarly, while
the smartphone verification app gives voters some ability to
check that the client software is behaving honestly, there are
major limitations to this safeguard that can be exploited to
hide malicious client behavior.
We experimentally verified that these trusted components

are vulnerable by conducting two sets of demonstration at-
tacks against them in our mock election setting. The first
type are attacks on the client that are within reach of a
financially capable attacker, in which an attacker can change
votes in a retail manner for large numbers of individual vot-
ers. The second kind are server-side attacks within the reach
of a well-resourced state-level attacker or dishonest insider,
in which an attacker could change the wholesale results of
the entire election by compromising the vote counting server.

5.1 Client-side Attacks
The voter’s client machine is a trusted component of the

I-voting system, and there are several ways that an attacker
might try to infect a sufficient number of Estonian clients to
alter election results in a close race. One is to rent bots from
pre-existing botnets. Botnet operators frequently offer them
for rent on the black market, and these can be targeted to
a specific country or region [12]. A second way would be
to discover or purchase a zero-day exploit against popular
software used in Estonia. While this would be expensive,
it would not be out of reach for a state-level attacker—
several companies specialize in selling zero-day exploits to
governments [33]. A third strategy would be to infect the
official I-voting client before it is delivered to voters. The
operational security problems documented in Section 3.2
suggest that this is a practical mode of attack.

Figure 11: Malware records secret PINs — Estonians
use their national ID smartcards to sign and cast ballots. We
developed demonstration client-side malware that captures
the smartcard PINs and silently replaces the user’s vote.

If the attacker’s goal is merely to disrupt the election,
far fewer infected system would be required. Estonian law
allows election officials to cancel online balloting if a problem
is detected [35]. In that case, Internet voters would have
their electronic votes canceled and be required to go to the
polls on election day. This is a useful emergency measure,
but it requires election officials to both detect the attack
and make a snap decision about its severity. Suppose an
attacker infected a small number of clients with vote-stealing
malware, allowed some of them to be detected, and designed
the attack such that it was difficult to quickly determine the
size of the infected population. Under these circumstances,
officials might be compelled to cancel the online portion
of the election, yet the attacker would need relatively few
resources.
In order to investigate how an attacker could modify votes

through the client application, we implemented two exper-
imental client-side attacks. Both assume that the attacker
has used one of the techniques noted above to initially infect
the client machine. Each attack uses a different mechanism
to defeat the smartphone verification app (see Section 2.3),
the only tool available to voters to detect whether their ballot
choices have been manipulated by client-side malware.
Both attacks involve hidden malicious processes that run

alongside the I-voting client application and tamper with
its execution. In order to develop them, we first needed to
reverse engineer parts of the client software used in 2013. The
client is closed source, and the developers took measures to
complicate reverse engineering. The executable is obfuscated
using the UPX packing tool. Strings, public keys, and other
resources are hidden by XORing them with the output of
a linear congruential generator. These measures did not
significantly complicate the construction of our attacks. We
used the UPX application with the -d switch to unpack the
binary and used the IDA Pro disassembler and Hex-Rays
decompiler to reverse the portions necessary for our attacks.

Ghost Click Attack In the first attack, we use malware
on the client machine to silently replace the user’s vote with
a vote in favor of an attacker-selected candidate. At a high
level, the malware silently sniffs the victim’s PIN during the
original voting session. The real vote is cast, and everything

8



appears normal, including the verification smartphone app
if the voter uses it. Then, the malware waits until it is too
late to verify again—either until the 30 minute time limit
has passed or until after the user closes the client software
and the QR code can no longer be scanned.
At that point, the malware checks whether the voter’s

ID card is still present in the computer. If so, it opens a
copy of the I-voting client in a hidden session and, through
keystroke simulation, submits a replacement vote. If the
ID card has already been removed, the malware remains
dormant until the card is inserted again. Since Estonian ID
cards are used for a variety of applications, many voters are
likely to use their cards again within the week-long online
voting period.

In our implementation, the malware attaches to the voting
client process and captures PINs by setting breakpoints
using ptrace [55]. Upon reaching a breakpoint, it reads the
PIN from the client’s memory and stores it for future use.
Although our implementation runs in userspace, a kernel-
level rootkit could be used to make the attack even more
difficult to detect [36]. The malware could be extended to
sniff PINs opportunistically any time voters use their ID
cards, such as when logging into a bank.
Bad Verify Attack The Ghost Click attack defeats the
verification app, but applying it on a large scale would lead
to a suspiciously high number of replacement votes. We also
experimented with a stealthier but more complicated style
of attack that targets the verification app directly.
The verification app is premised on the notion that the

smartphone is an independent device that is unlikely to be
compromised at the same time as the client PC. However,
modern smartphones are not well isolated from users’ PCs,
as there is typically regular communication between the
two devices. Users frequently plug their phones into their
PCs to charge them or to transfer files. User content is
regularly synchronized between devices through Google Drive,
Dropbox, and other cloud services. Android even allows users
to remotely install applications on their phones from their
PCs through the Google Play Store web interface, and other
platforms have similar mechanisms [50]. As a result of this
convergence, there are abundant means by which PC malware
can attempt to infect the user’s phone. This would allow the
attacker to deploy a dishonest verification app that colludes
with malware on the PC to fool the voter.

To experiment with such an attack, we implemented tan-
dem PC and smartphone malware. Malware on the PC
detects which candidate the voter selects and modifies the
QR code shown by the I-voting client so that it encodes the
voter’s chosen candidate. A malicious verification app on
the voter’s phone behaves just like the real verification app,
except that it displays whatever candidate is embedded in
the QR code, rather than the candidate for whom the vote
was actually cast. This allows the PC malware to arbitrar-
ily change the submitted vote without being detected by
verification or causing a suspicious number of replacement
votes.
This form of attack adds complexity, due to the need to

compromise both devices simultaneously. It also carries an
elevated possibility of detection if used on a large scale, since
some voters may attempt verification with devices owned by
others. However, it illustrates that as the PC and smartphone
platforms continue to converge, it will become increasingly
unsafe to treat them as independent devices.

5.2 Server-side Attacks
The integrity of the count depends on the correct operation

of the counting server and its HSM, which are the only com-
ponents with the ability to decrypt votes. Similarly, ballot se-
crecy depends on the counting server to not leak information
about the correspondence between encrypted and decrypted
votes. An attacker who infects the counting server with ma-
licious software can violate these critical security properties.
Although the counting server is not connected to a network,

there are a number of other means by which it might be
attacked. State-level attackers are known to employ firmware-
based malware [4], for instance, which could be used to
infect the BIOS or hard disk before delivery to election
officials. Sophisticated attackers can also target component
supply chains and distribution infrastructure [43]. We were
informed during our observation mission that the Internet
Voting Committee has a bid process prior to every election
to rent the servers that they use, and attackers could try to
introduce subverted hardware through this process.
Another infection strategy would be to compromise the

server software before it is installed at the beginning of the
election. We pursued this route in our experiments.
Injecting malware Despite procedural safeguards [17],
an attacker who strikes early enough can introduce malicious
code into the counting server by using a chain of infections
that parallels the configuration process. During pre-election
setup, workers use a development machine, which is config-
ured before setup begins, to burn Debian Linux installation
ISOs to DVDs. These DVDs are later used to configure all
election servers. If the machine used to burn them is compro-
mised—say, by a dishonest insider, an APT-style attack on
the development facility, or a supply-chain attack—the at-
tacker can leverage this access to compromise election results.
We experimented with a form of this attack to successfully

change results in our mock election setup. We first created
a modified Debian ISO containing vote-stealing malware
intended to execute on the counting server. The tainted
ISO is repackaged with padding to ensure that it is identical
in size to the original. In a real attack, this malicious ISO
could be delivered by malware running on the DVD burning
computer, by poisoning the mirror it is retrieved from, or by
a network-based man-in-the-middle.
Defeating integrity checking During the setup pro-
cess, election workers check the SHA-256 hash of the ISO
file against the SHA256SUMS file downloaded via anonymous
FTP from debian.org. Since regular FTP does not provide
cryptographic integrity checking, a network-based man-in-
the-middle could substitute a hash that matched the mali-
cious ISO. However, this hash would be publicly visible in
videos of the setup process and might later arouse suspicion.

An attacker who had compromised the DVD burner com-
puter could achieve greater stealth. To demonstrate this, we
implemented a custom rootkit that defeats the hash verifica-
tion. Our rootkit is a kernel module that hooks system calls
in order to cause the hash verification to succeed and the
original ISO’s hash to be printed. Hash checks applied in this
way are only a minor speedbump under our threat model.
Vote-stealing payload After passing the hash check, the
tainted ISOs are used to install the OS on all election servers,
spreading the infection. When the new OS boots, the mal-
ware checks whether the machine is configured as the counting
server, in which case it launches a vote-stealing payload.

9



During the counting process, this payload acts as wrapper
around the process responsible for using the HSM to decrypt
votes. This allows the malware to alter the decrypted votes
prior to returning them to the counting application. (In our
demonstration, we change 100% of the votes, but it would
be straightforward to implement a more subtle algorithm
that manipulates an arbitrary fraction.) The altered votes
are then counted and released as the official results. Such
an attack would be unlikely to be detected, as there is no
audit mechanism to check the accuracy of the decryption.
Other avenues for infection What we have described is
far from the only means of injecting a malicious payload into
the servers. Several other pieces of closed-source software
of unknown or untrusted provenance could be vehicles for
attacks. These include the evote_post.sh script, missing
from the server source code repository, which runs on all
servers, as well as the driver software for the HSM, which is
a closed-source application manually installed to the count-
ing server from a DVD. These programs all touch critical,
trusted portions of the I-voting system, yet they are not
reviewable by the public and not integrity checked through
any visible procedures.
In fact, during the pre-election server setup process in

2013, workers used an incorrect version of the evote_post.sh
script that failed to install the evote_analyzer package on
the VFS. Administrators later had to manually install this
package during the voting period, after they realized that
the server was not reporting all expected log data [56]. This
provides a case-in-point example of a failure of the procedural
protections to ensure that only the correct software gets
installed on the server machines.
Zero-day exploits are yet another potential attack vector,

and a source of many “known unknowns.” One illustration
of this is the OpenSSL Heartbleed bug [34], which was not
disclosed until April 2014. The front-end server used during
the 2013 election was vulnerable to Heartbleed, and an at-
tacker who knew about the bug likely could have exploited
it to extract the server’s TLS private key. Then, using a
man-in-the-middle attack on connections from voters, they
could have selectively prevented certain voters’ ballots from
being received by the real server.
The key lesson from our server-side attack is that it is

extremely difficult to ensure the integrity of code running on
a critical system, particularly when faced with the possibility
of sophisticated attacks or dishonest insiders. If any element
in the lineage of devices that handle the software installed
on the counting server is compromised, this could jeopardize
the integrity of election results [63].

5.3 Attacking Ballot Secrecy
While our experiments focused on attacks against the in-

tegrity of election results, we also considered ballot secrecy
issues, since the secrecy of the voter’s ballot is a critical
defense against voter coercion and vote buying. The I-voting
system implements a relatively strong protection against
in-person, individual coercion by allowing voters to cast re-
placement votes online or to cancel their electronic ballots
entirely and vote in person on election day. More sophisti-
cated attacks remain possible, however, including spyware on
the voter’s PC or smartphone, as well as server-side attacks.
Server-side attacks on ballot secrecy are particularly trou-

bling, since preserving ballot secrecy is a main goal of the
system’s cryptographic double-envelope architecture. The

I-voting design attempts to ensure that votes remain private
by breaking the association between voters’ digital signa-
tures from their plaintext votes. The encrypted ballots are
separated from the signatures and copied to an isolated ma-
chine before being decrypted and counted. Note that this
machine, the counting server, has access to the complete
association between the encrypted ballots and the plaintext
votes. An attacker who can smuggle this information out
through a covert channel can compromise every voter’s secret
ballot.
Unfortunately, the tabulation procedures offer multiple

possibilities for exfiltrating this information. When tabula-
tion is complete, officials use the counting server to burn a
DVD containing both vote totals and log files. Suppose for
simplicity that the attacker is a dishonest insider with access
to this DVD and to the complete set of signed, encrypted
ballots (e.g. from a backup disk) and some mechanism for
infecting the counting server with malicious code, such as
the routes discussed above. The counting server malware
can sort the encrypted ballots and leak the voter choices
corresponding to each as a sequence of integers in the same
order. Since there is typically only one race, only a few
bits per ballot are needed to determine the choices of all
voters. The malware could steganographically encode this
data into the log files through the order of entries, or it could
simply write this information to unallocated sectors of the
disc. The attacker can then decode this information and
use it to associate every voter’s digital signature (and hence,
their identity) with their vote.

6. DISCUSSION
Though we have spent the majority of this report dis-

cussing weaknesses and risks, we would be remiss if we failed
to acknowledge the great lengths that the I-voting system
developers, security staff, and officials go to in their efforts
to protect the election system.
One core strength of the I-voting system is Estonia’s na-

tional ID card infrastructure and the cryptographic facilities
it provides. While the ID cards cannot prevent every impor-
tant attack, they do make some kinds of attacks significantly
harder. The cards also provide an elegant solution for remote
voter authentication, something few countries do well.
The Internet Voting Committee’s willingness to release

source code is a very positive step for transparency. This
shows confidence in the software’s developers and demon-
strates officials’ desire to work with the security community
at large. Providing access to the source allows many parties
to analyze it—not only international researchers like us but
also the domestic security community, who have an even
greater interest in the system’s secure operation. For these
reasons, we urge the committee to go further and release the
source code to the I-voting client and the missing portions
of the server code discussed in Section 4.1.
Finally, we commend the Internet Voting Committee for

their dedication to improving the election system. Since
its inception in 2005, the system has undergone significant
changes. From the switch to a standalone client, to the
deployment of the log server that enhances forensic and
monitoring capabilities, to the addition of the verification
app, the I-voting system has not stood still. Yet as we have
argued, even these and an array of other useful safeguards
are not enough to secure Estonia’s online elections in the
face of a determined and well-resourced modern attacker.

10



Opportunities for innovation While the risks of Inter-
net voting are clear, the benefits are uncertain. Many Estoni-
ans support I-voting because they believe there is widespread
fraud in the country’s paper-based system. Whether or not
these concerns are founded, the I-voting system can do little
to help, since nearly 80% of votes are still cast on paper.
Fortunately, there are safe and effective ways to apply new
technology to secure paper-based voting.
In recent years, researchers have developed methods that

can dramatically increase the security of paper ballots. Sta-
tistical risk-limiting audits [6, 7, 46,62] can minimize the risk
of error or fraud during tabulation. Cryptographic tech-
niques that achieve end-to-end verifiability [5,9,59] enable
individual voters to verify that every vote has been counted
accurately. Estonia has an opportunity to be the first country
in the world to adopt these technologies on a national scale.

7. CONCLUSIONS
Compared to other online services like banking and e-

commerce, voting is an exceedingly difficult problem, due to
the need to ensure accurate outcomes while simultaneously
providing a strongly secret ballot. When Estonia’s I-voting
system was conceived in the early 2000s, it was an inno-
vative approach to this challenge. However, the designers
accepted certain tradeoffs, including the need to trust the
central servers, concluding that although they could take
steps to reduce these risks through procedural controls, “the
fundamental problem remains to be solved” [2]. More than
a decade later, the problem remains unsolved, and those
risks are greatly magnified due to the rapid proliferation of
state-sponsored attacks.
As we have observed, the procedures Estonia has in place

to guard against attack and ensure transparency offer insuf-
ficient protection. Based on our tests, we conclude that a
state-level attacker, sophisticated criminal, or dishonest in-
sider could defeat both the technological and procedural con-
trols in order to manipulate election outcomes. Short of this,
there are abundant ways that such an attacker could disrupt
the voting process or cast doubt on the legitimacy of results.
Given the current geopolitical situation, we cannot discount
state-level attacks targeting the system in future elections.
Due to these risks, we recommend that Estonia discontinue

use of the I-voting system. Certainly, additional protections
could be added in order to mitigate specific attacks (e.g. [48]),
but attempting to stop every credible mode of attack would
add an unmanageable degree of complexity. Someday, if
there are fundamental advances in computer security, the risk
profile may be more favorable for Internet voting, but we do
not believe that the I-voting system can be made safe today.

Acknowledgments
We thank everyone in Estonia who shared their insights on
the I-voting system during our visits, including Sven Heiberg,
Andres Hiie, Priit Kutser, Helger Lipmaa, Tarvi Martens,
Arnis Parsovs, Jan Willemson, and many others. Of course,
the views expressed here (and any errors) are ours alone. We
also thank David Jefferson, Brian Krebs, Barbara Simons,
Peiter “Mudge” Zatko, and the anonymous reviewers. We are
particularly grateful to Rop Gonggrijp and Dominic Rizzo
for numerous suggestions and contributions.
We have not accepted any financial support from within

Estonia, except for travel and accommodations for the ob-

servers during the October 2013 voting period, which were
reimbursed by Tallinn City Council. The only requirement
for that arrangement was that we observe the election.
This material is based upon work supported by Google/

ATAP, by the U.S. National Science Foundation under grants
CNS-1255153 and CNS-1345254, and by an NSF Graduate
Research Fellowship under grant DGE-1256260.

— Tallinn, May 2014

8. REFERENCES
[1] B. Adida. Helios: Web-based open-audit voting. In

Proceedings of the 17th USENIX Security Symposium,
Aug. 2008.

[2] A. Ansper, A. Buldas, M. Oruaas, J. Priisalu,
A. Veldre, J. Willemson, and K. Virunurm. E-voting
concept security: analysis and measures. Technical
Report EH-02-01, Estonian National Electoral
Committee, 2003.

[3] A. W. Appel. Security seals on voting machines: A case
study. ACM Trans. Inf. Syst. Secur., 14(2):18:1–18:29,
Sept. 2011.

[4] J. Applebaum, J. Horchet, and C. Stöcker. Shopping
for spy gear: Catalog advertises NSA toolbox. Der
Spiegel, Dec. 2013. http://www.spiegel.de/
international/world/catalog-reveals-nsa-has-back-
doors-for-numerous-devices-a-940994.html.

[5] J. Benaloh, M. Byrne, P. T. Kortum, N. McBurnett,
O. Pereira, P. B. Stark, and D. S. Wallach. STAR-Vote:
A secure, transparent, auditable, and reliable voting
system. CoRR, abs/1211.1904, 2012.

[6] J. Bretschneider, S. Flaherty, S. Goodman,
M. Halvorson, R. Johnston, M. Lindeman, R. L. Rivest,
P. Smith, and P. B. Stark. Risk-limiting post-election
audits: Why and how, Oct. 2012.
http://www.stat.berkeley.edu/~stark/Preprints/
RLAwhitepaper12.pdf.

[7] J. A. Calandrino, J. A. Halderman, and E. W. Felten.
Machine-assisted election auditing. In Proceedings of
the USENIX/ACCURATE Electronic Voting
Technology Workshop (EVT), 2007.

[8] D. Chaum. Secret-ballot receipts: True voter-verifiable
elections. IEEE Security & Privacy, 2(1):38–47, Jan
2004.

[9] D. Chaum, R. Carback, J. Clark, A. Essex,
S. Popoveniuc, R. Rivest, P. Y. A. Ryan, E. Shen,

11



A. Sherman, and P. Vora. Scantegrity II: End-to-end
verifiability by voters of optical scan elections through
confirmation codes. IEEE Transactions on Information
Forensics and Security, 4(4):611–627, Dec. 2009.

[10] M. Clayton. Ukraine election narrowly avoided ‘wanton
destruction’ from hackers. Christian Science Monitor,
June 2014. http://www.csmonitor.com/World/
Security-Watch/Cyber-Conflict-Monitor/2014/0617/
Ukraine-election-narrowly-avoided-wanton-
destruction-from-hackers-video.

[11] Cybernetica AS. Internet voting solution, 2013.
Accessed: May 13, 2014, http://cyber.ee/uploads/2013/
03/cyber_ivoting_NEW2_A4_web.pdf.

[12] D. Danchev. Study finds the average price for renting a
botnet. ZDNet, May 2010.
http://www.zdnet.com/blog/security/study-finds-the-
average-price-for-renting-a-botnet/6528.

[13] Estonian Certification Authority. Avaleht. In Estonian.
http://www.id.ee/.

[14] Estonian Certification Authority. Kasulik tugiinfo
mobiil-id kohta. In Estonian.
http://mobiil.id.ee/kasulik-tugiinfo/.

[15] Estonian Certification Authority. Mis on ID-tarkvara?
In Estonian. https://installer.id.ee/.

[16] Estonian Information System’s Authority. Public key
infrastructure PKI, May 2012.
https://www.ria.ee/public-key-infrastructure/.

[17] Estonian Internet Voting Committee. Dokumendid,
2013. In Estonian. Accessed: March 2014,
http://vvk.ee/valijale/e-haaletamine/e-dokumendid/.

[18] Estonian Internet Voting Committee. Ehk videos, 2013.
In Estonian. Accessed: March 2014,
https://www.youtube.com/channel/
UCTv2y5BPOo-ZSVdTg0CDIbQ/videos.

[19] Estonian Internet Voting Committee. Statistics about
Internet voting in Estonia, May 2014.
http://www.vvk.ee/voting-methods-in-estonia/
engindex/statistics.

[20] Estonian Internet Voting Committee. Using ID-card
and mobil-ID, May 2014.
https://www.valimised.ee/eng/kkk.

[21] Estonian Ministry of Foreign Affairs. Estonia today,
2012. http://www.euc.illinois.edu/estonia/documents/
E-Estonia.pdf.

[22] Estonian National Electoral Committee. Kohaliku
omavalitsuse volikogu valimised 2013. In Estonian.
http://www.vvk.ee/kohalikud-valimised-2013/.

[23] Estonian National Electoral Committee. Vabariigi
valimiskomisjon. In Estonian. Accessed: October 2013,
http://www.vvk.ee/.

[24] Estonian National Electoral Committee. Elektroonilise
hääletamise süsteemi üldkirjeldus, 2013. In Estonian.
http://vvk.ee/public/dok/elektroonilise-haaletamise-
systeemi-yldkirjeldus-EH-03-03-1_2013.pdf.

[25] Estonian National Electoral Committee. Valimised:
Android Apps on Google Play, Oct. 2013. In Estonian.
Accessed: May 13, 2014, https://play.google.com/store/
apps/details?id=ee.vvk.ivotingverification.

[26] Estonian National Electoral Committee. Comment on
the article published in The Guardian, May 2014.
http://vvk.ee/valimiste-korraldamine/vvk-uudised/

vabariigi-valimiskomisjoni-vastulause-the-guardianis-
ilmunud-artiklile/.

[27] Estonian National Electoral Committee. Valimised on
the App Store on iTunes, Apr. 2014. In Estonian.
Accessed: May 15, 2014, https://itunes.apple.com/ee/
app/valimised/id871129256.

[28] Estonian National Electoral Committee. Valimised:
Windows Phone’i rakenduste+mängude pood (Eesti),
Apr. 2014. In Estonian. Accessed: May 15, 2014,
https://www.windowsphone.com/et-ee/store/app/
valimised/11c10268-343f-461a-9c73-630940d8234b.

[29] Estonian National Electoral Committee, Estonian
Internet Voting Committee, and Cybernetica AS.
Android based vote verification application for
Estonian i-voting system, Sept. 2013.
https://github.com/vvk-ehk/ivotingverification.

[30] Estonian National Electoral Committee, Estonian
Internet Voting Committee, and Cybernetica AS.
e-hääletamise tarkvara, Sept. 2013. Accessed: March
2014, https://github.com/vvk-ehk/evalimine.

[31] Estonian Public Broadcasting. Center Party petitions
European human rights court over e-voting, Sept. 2013.
Accessed: May 14, 2014, http://news.err.ee/v/politics/
4ee0c8a2-b9c2-4d28-8ae4-061e7d9386a4.

[32] J. Fleming. EU nations developing cyber ‘capabilities’
to infiltrate government, private targets. EurActiv, Dec.
2013. http://www.euractiv.com/infosociety/
eu-nations-lack-common-approach-news-532294.

[33] A. Greenberg. Shopping for zero-days: A price list for
hackers’ secret software exploits. Forbes, Mar. 2012.
http://www.forbes.com/sites/andygreenberg/2012/03/
23/shopping-for-zero-days-an-price-list-for-hackers-
secret-software-exploits/.

[34] The Heartbleed bug, Apr. 2014.
http://heartbleed.com/.

[35] S. Heiberg, P. Laud, and J. Willemson. The application
of i-voting for Estonian parliamentary elections of 2011.
In VOTE-ID, pages 208–223, 2011.

[36] G. Hoglund and J. Butler. Rootkits: Subverting the
Windows Kernel. Addison-Wesley, 2005.

[37] ICT Export Cluster. e-estonia.com: The digital society,
Aug. 2014. http://e-estonia.com/.

[38] R. Johnston. The real deal on seals: Improving tamper
detection. Security Management, 41:93–100, Sept. 1997.

[39] R. Johnston. Some comments on choosing seals and on
PSA label seals. In Proceedings of the 7th Security
Seals Symposium, 2006.
http://www.ne.anl.gov/capabilities/vat/pdfs/
choosing-seals-and-using-PSA-seals-2006.pdf.

[40] R. Johnston. Insecurity of New Jersey’s seal protocols
for voting machines, Oct. 2010.
http://www.cs.princeton.edu/~appel/voting/
Johnston-AnalysisOfNJSeals.pdf.

[41] R. Johnston and A. R. Garcia. Vulnerability
assessment of security seals. Journal of Security
Administration, 20:15–27, 1997.

[42] D. W. Jones and B. Simons. Broken Ballots: Will Your
Vote Count? Stanford University Center for the Study
of Language and Information, 2012.

[43] E. Kain. Report: NSA intercepting laptops ordered
online, installing spyware. Forbes, Dec. 2013. Accessed:

12



May 14, 2014, http://www.forbes.com/sites/erikkain/
2013/12/29/report-nsa-intercepting-laptops-ordered-
online-installing-spyware/.

[44] J. Kitcat. Source availability and e-voting: An advocate
recants. Commun. ACM, 47(10):65–67, Oct. 2004.

[45] B. Laxton, K. Wang, and S. Savage. Reconsidering
physical key secrecy: Teleduplication via optical
decoding. In Proceedings of the 15th ACM Conference
on Computer and Communications Security (CCS),
pages 469–478, 2008.

[46] M. Lindeman and P. B. Stark. A gentle introduction to
risk-limiting audits. IEEE Security & Privacy,
10(5):42–49, 2012.

[47] H. Lipmaa. Paper-voted (and why I did so). Blog post,
Mar. 2011. http://helger.wordpress.com/2011/03/05/
paper-voted-and-why-i-did-so/.

[48] H. Lipmaa. A simple cast-as-intended e-voting protocol
by using secure smart cards, May 2014.
http://eprint.iacr.org/2014/348.

[49] Mandiant. APT1: Exposing one of China’s cyber
espionage units, Feb. 2013.
http://intelreport.mandiant.com/
Mandiant_APT1_Report.pdf.

[50] N. Mediati. How to remotely install apps on your
smartphone. TechHive, Nov. 2013.
http://www.techhive.com/article/2067005/how-to-
remotely-install-apps-on-your-smartphone.html.

[51] U. Oja. Paavo Pihelgas: Elektroonilise hääletamise
vaatlemine on lihtsalt võimatu, Mar. 2011. In Estonian.
http://forte.delfi.ee/news/digi/
paavo-pihelgas-elektroonilise-haaletamise-vaatlemine-
on-lihtsalt-voimatu.d?id=41933409.

[52] F. Paget. Hacking summit names nations with
cyberwarfare capabilities. McAfee Blog Central, Oct.
2013. http://blogs.mcafee.com/mcafee-labs/hacking-
summit-names-nations-with-cyberwarfare-capabilities.

[53] A. Parsovs. Practical issues with TLS client certificate
authentication, Feb. 2014.
https://www.internetsociety.org/sites/default/files/
12_4_1.pdf.

[54] B. Plumer. Estonia gets to vote online. Why can’t
America? Wonkblog. The Washington Post, Nov. 2012.
http://www.washingtonpost.com/blogs/wonkblog/wp/
2012/11/06/
estonians-get-to-vote-online-why-cant-america/.

[55] ptrace(2): process trace. Linux Programmer’s Manual.
[56] T. Raidma and J. Kase. Kohaliku omavalitsuse

volikogu valimiste e-hääletamise protseduuride
hindamise löpparuanne, Jan. 2014. In Estonian. http://
vvk.ee/public/KOV13/lopparuanne_2013.ddoc.

[57] D. G. Robinson and J. A. Halderman. Ethical issues in
e-voting security analysis. In Proceedings of the 2nd
Workshop on Ethics in Computer Security Research
(WECSR), March 2011.

[58] rsyslog: The rocket-fast system for log processing, Apr.
2014. http://www.rsyslog.com/.

[59] P. Y. A. Ryan, D. Bismark, J. Heather, S. Schneider,
and Z. Xia. Prêt à voter: A voter-verifiable voting
system. Trans. Info. For. Sec., 4(4):662–673, Dec. 2009.

[60] D. E. Sanger. Obama order sped up wave of
cyberattacks against Iran. The New York Times, June
2012. http://www.nytimes.com/2012/06/01/world/
middleeast/obama-ordered-wave-of-cyberattacks-
against-iran.html.

[61] B. Simons. Report on the Estonian Internet voting
system. Verified Voting Blog, Sept. 2011.
https://www.verifiedvoting.org/
report-on-the-estonian-internet-voting-system-2/.

[62] P. B. Stark. Super-simple simultaneous single-ballot
risk-limiting audits. In Proceedings of the USENIX
Electronic Voting Technology Workshop/Workshop on
Trustworthy Elections (EVT/WOTE), Aug. 2010.

[63] K. Thompson. Reflections on trusting trust. Commun.
ACM, 27(8):761–763, Aug. 1984.

[64] I. Traynor. Russia accused of unleashing cyberwar to
disable Estonia. The Guardian, May 2007.
http://www.theguardian.com/world/2007/may/17/
topstories3.russia.

[65] I. Traynor. GCHQ: EU surveillance hearing is told of
huge cyber-attack on Belgian firm. The Guardian, Oct.
2013. http://www.theguardian.com/uk-news/2013/oct/
03/gchq-eu-surveillance-cyber-attack-belgian.

[66] S. Wolchok, E. Wustrow, J. A. Halderman, H. K.
Prasad, A. Kankipati, S. K. Sakhamuri, V. Yagati, and
R. Gonggrijp. Security analysis of India’s electronic
voting machines. In Proceedings of the 17th ACM
Conference on Computer and Communications Security
(CCS), pages 1–14, 2010.

[67] S. Wolchok, E. Wustrow, D. Isabel, and J. A.
Halderman. Attacking the Washington, D.C. Internet
voting system. In Proceedings of the 16th International
Conference on Financial Cryptography and Data
Security, Feb. 2012.

13


	Introduction
	Background
	National ID Cards
	I-Voting Server Infrastructure
	Voting Processes

	Observations
	Inadequate Procedural Controls
	Lax Operational Security
	Insufficient Transparency
	Vulnerabilities in Published Code

	Experimental Methodology
	Mock Election Setup
	Threat Model

	Attacks
	Client-side Attacks
	Server-side Attacks
	Attacking Ballot Secrecy

	Discussion
	Conclusions
	References

